
Arithmetic Algorithms: Discrete Fourier

Transform

The present tour studies values of a given function in a fixed finite set of
sample points and shows that, with respect to such points, the function can be
replaced by a finite linear combination of sinusoidal functions.

More precisely, we are given an interval, e.g., the interval I = [0, 2π] (since
2π is the period of the function f(x) = sinx), and N points x0, x1, . . . , xN−1

regularly spread out over the interval, i.e., x` = 2π`/N for ` = 0, 1, . . . , N − 1,
and some real valued function ϕ, defined on the interval I.

Assuming that N is even, there is the unique collection of real numbers bk,
k = 1, . . . , N/2− 1, ck, k = 1, . . . , N/2, and d such that

ϕ(x`) =

N/2−1∑
k=1

bk sin(kx`) +

N/2−1∑
k=1

ck cos(kx`) + d for each ` = 0, . . . , N − 1.

(1)
A more general and more mathematically elegant (but equivalent) form of

the statement is that if ϕ is a complex function, defined on I, then there are
complex numbers a0, a1, . . . , aN−1 such that

ϕ(x`) =

N−1∑
k=0

akω
k` for each ` = 0, . . . , N − 1, (2)

where ω is a complex number such that ωN = 1, and the values ω0, ω1, ω2, . . . ωN−1

are mutually different (note that ω0 = 1 and ω1 = ω). An example of such ω is
e2πi/N (or e−2πi/N ).

The statements will be proved in the Appendix; the aim of this tour is to
show the motivation and use of such statements.

Function Drawing

The first scene just shows how to draw a function in the upper rectangle. The
absolute values are not important, but you can assume that the width of the
rectangle is 2π, and the vertical distance from the line in the middle of the
rectangle (representing the value 0) both to the top and the bottom of the
rectangle is 1.
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Push the button of the mouse when the cursor is inside the upper rectangle,
and drag. Play with the mouse to get familiar with the function drawing.

The functions you can draw in this way are usually not very smooth, but
quite sufficient for our purposes.

Sinusoids

The function drawn in the previous scene and many function obtained in an
alternative way are not sufficiently smooth and do not have a clear structure.
The main goal of the Fourier analysis is to replace such functions (at least
in a limited sense) by a linear combination of simple and smooth functions.
The present scene shows one class of such simple functions - sinusoids. Catch
the top of the red rectangle, representing the amplitude of the sinusoid, by
the mouse, and move it up-and-down. The amplitude of the sinusoid changes
correspondingly.

At the botton of the lower rectangle, you can see small squares (or rectangles
for some window aspects), one of them is checked (by a cross). Try to cross other
squares (which unchecks the previously checked square), and manipulate with
the red, green or blue column that appears.

Checking the square labeled “C” shows a constant function, the amplitude
rectangle is blue. Use the reddish squares left to the C-square to show sinusoids
- the box labeled by k shows the function a sin kx, where a is given by the height
of the red amplitude rectangle, i.e., a sinusoid of the period that fits k times to
the main rectangle.

Checking the greenish squares right to the C-square shows cosinusoids (but
note that a cosinusoid is just a sinusoid shifted left by one quarter of its period).
The amplitude rectangle is green, the label of the box tells how many times the
period is shorter than 2π.

It is also possible to change the number of boxes, using a choice in the control
bar. For this tour, any even number would be acceptable, but the fastest know
algorithm for finding numbers ak, bk, and c, called Fast Fourier Transform (FFT
- explained in another tour of Algovision), requires N to be the integer power
of 2, and hence the choice of N is limited to powers of 2.

Sinusoid Combinations

The present scene is very similar to the previous one, but one can check more
squares in the lower rectangle, and set the corresponding amplitudes using the
mouse. The red function that appears in the upper rectangle is a linear combi-
nation of the selected (co)sinusoids that were multiplied by the selected ampli-
tudes.

Play with the scene to see how variable are the functions we can get in this
way.
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Function Sampling

When studying some physical or other value that changes in time, we are not
(and could not be) interested in values at all time points - there is an infinite
number of them. Most often, we are interested in values in a finite set of points
that are regularily spread over the interval. In this and the remaining scenes,
such time points are represented by blue vertical line segments in the upper
rectangle.

Draw a function (a black plot) in the same way as in the scene “Function
Drawing”. Small black circles given by intersections of blue sample lines with
the black graph of the function are sample points that have been measured;
other values of the black function are not interesting for us. This is why we
speak about Discrete Fourier analysis.

Note that, after sampling, the values of the black function represent a vector
- a sequence of numbers of a fixed length.

The choice in the control bar can be used to modify the number of sample
time lines.

Spectral Analysis

This is the key scene of the DFT tour. Draw any function in the upper rectangle.
The program automatically computes the amplitudes of sinusoids, cosinusoids,
and the constant (shown in the lower rectangle) so that the their linear com-
bination (obtained in a way explained is the scene “Sinusoid Combinations”)
exactly matches the values of the original black function in the sample times.

The collection of amplitudes is called a spectrum of the original function.
If the black function is smooth, the red function is almost identical to it. Try

to draw a function that has at least one (or more) really big jumps of the value
from one sample line to the next one. In such a case the red function might be
substantially different between the sample lines, but there is no way to make it
different at sample times.

You can also change the value of N - this changes both the sample lines in
the upper rectangle (there are always N lines) and the number of check squares
in the lower rectangle - we have one square corresponding to a constant, N/2−1
squares for sinusoids and N/2 squares for cosinusoids, altogether N boxes, i.e.,
N degrees of freedom for the choice of amplitudes, which, as we will show in
Appendix, is exactly what we need to match values in N sample times.

Now I can also explain a strange asymmetry between sinusoids (N/2 − 1
frequencies) and cosinusoids (N/2 frequencies): the function sin(Nx/2), the
first sinusoid not used, has the value 0 in all sample points, and hence it would
be of no help in matching the black function in the sample points:

For k = 0, . . . , N − 1 if x = 2πk/N, then sin(Nx/2) = sinπk = 0.
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Spectrum Search

This scene is very useful for understanding Discrete Fourier Transform. It is very
similar to the previous one, but it is you who has to estimate the amplitudes of
the harmonic functions. Of course, the task is pretty difficult, but you should be
able at least to roughly estimate amplitudes for basic low-frequency functions
(e.g., whether the amplitude is positive or negative or close to zero, whether the
amplitude is large or small, etc.). For any particular sinusoid or cosinusoid (or
the constant), change its amplitude and try to find the best match.

After preparing your estimation for a particular sin/cos function, uncheck
the corresponding check square below the amplitude bar. The system replaces
your estimation by the correct value and you can see how precise your estimation
was. (The square can be re-checked, the amplitude changed, unchecked . . .).

Spectral Compression

The last scene shows one important application of DFT - a data compression.
Draw a black function in the upper rectangle. Similarly like in the Spectral
Analysis scene, the amplitudes in the lower triangles are correctly set, but could
not be changed, even though the check squares appear.

If a particular check square is unchecked, the corresponding amplitude is not
taken into account when computing the red function.

Start to uncheck the sin/cos/const checkboxes, starting with those with high
labels. What you can see is that the red function does not any more match
exactly the original black function in sample points, but for a long time it looks
very similar to the black one. If, e.g., the black function represents a recorded
sound, “cutting off” the amplitudes of the high harmonic functions gives a tone
with a very similar “color”.

Fourier analysis is a basis for JPEG image compression - very roughly speak-
ing, the digitalized image is decomposed into small square areas of pixels, values
of pixels in each area are considered as a vector, the spectrum of the vector is
computed, its high order components are erased or reduced, and the result is
stored. When the image is being restored, it is computed from the reduced
spectrum. The experience says that such an image looks very similar as the
original one.

Appendix 1

This part of the text does not describe a scene of the tour, but brings more
mathematical description of Discrete Fourier Transform.

It is known that for any complex x,

eix = cosx+ i sinx, (3)

where i is the complex unit (i =
√
−1).
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The easiest proof comes from the theory of Taylor series: We know that

ex = 1 + x+
x2

2
+
x3

3!
+
x4

4!
+ · · ·

which gives

eix = 1 + ix− x2

2
− ix

3

3!
+
x4

4!
+ · · · ,

and

cosx = 1− x2

2
+
x4

4!
+ · · ·

sinx = x− x3

3!
+ · · ·

which together gives (3).
Let us first clarify the relation of equations (1) and (2). Assume certain

complex-valued function ϕ, defined at the interval [0, 2π], and an even number
N . Consider its values in points x` = 2π`/N , where ` = 0, . . . , N − 1. The
values will be denoted as A` = ϕ(x`) = ϕ(2π`/N).

Denote ω = e2πi/N . We have

ωN =
(
e2πi/N

)N
= eN ·2πi/N = e2πi = cos 2π + i sin 2π = 1 + i · 0 = 1.

Moreover numbers 1, ω, ω2, . . . , ωN−1 are different, because for any two dif-
ferent integers r, s, such that 0 ≤ r, s < N it is

ωr

ωs
= ωr−s = exp

(
2π(r − s)

N

)
= cos 2πξ + i sin 2πξ, where ξ = (r − s)/N,

and, according to our assumption, 0 < |r− s| < N , and hence 0 < ξ < 1, which
implies that cos 2πξ 6= 1, and consequently ωr 6= ωs.

The equation (3) immediately implies

cosx =
eix + e−ix

2
, (4)

sinx =
eix − e−ix

2i
. (5)

Substituting (4) and (5) into (1) (the equation (1) has been given at the
beginning of this text), we immediately see that that we can write the value
of ϕ in all sample points x` as a linear combination of functions ekx for k =
−N/2, . . . , N/2, i.e. there are numbers ak for k = −N/2, . . . , N/2 such that
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ϕ(x`) =

N/2∑
k=−N/2

akω
k` for ` = 0, . . . , N − 1, (6)

On the other hand, if we know coefficients ak to represent the values of ϕ
in the sample points according to (6), then a substitution using (3) gives us
immediately a representation of ϕ according to (1) (note that for k = 0, ωk` is
a constant function, equal to 1 everywhere).

We will further modify (6): for any integers k, `,

ω(k+N)` = ωk`ωN` = ωk`
(
ωN
)
` = ωk`1` = ωk`,

because ωN = 1.
This implies that ω−(N/2)` = ω(N/2)` and the corresponding terms in (6)

could be joined, and, moreover, ωk`, k = −N/2 + 1, . . . ,−1 in (6) could be
replaced by ωk`, k = N/2 + 1, . . . , N − 1, which transforms (6) into

ϕ(x`) =

N−1∑
k=0

akω
k` for ` = 0, . . . , N − 1, (7)

where x` = 2π`/N for ` = 0, . . . , N − 1.

Appendix 2

In the second appendix, we will show that, given an arbitrary complex-valued
function defined on the interval [0, 2π], there are unique numbers ak, k =
0, . . . , N − 1 such that (7) holds. The proof is based on elementary Linear
Algebra.

Consider the vectors vk, k = 0, . . . , N − 1 in the N -dimensional complex
Euclidean vector space of the dimension N that are defined as follows:

v` = (ω0·`, . . . , ω(N−1)·`.

(7) can be reformulated as a statement that the vector (ϕ(x0), . . . .ϕ(xN−1))
is a unique linear combination of vectors v0, . . . ,vN−1. Since the vectors repre-
sent N vectors in the N -dimensional vector space, it is necessary and sufficient
to prove that they are linearly independent, and hence they form a basis of the
vector space.

No one of the vectors is the null vector, because the first element of each of
them is ω0·k = 1. We will even prove that the vectors are mutually orthogonal,
and hence they form an orthogonal basis. The orthogonality of vr and vs means
that their scalar product is 0:

vr · vs =

N−1∑
k=0

ωkrωks =

N−1∑
k=0

ωkrω−ks =

N−1∑
k=0

ωkr−ks =

N−1∑
k=0

ωk(r−s).
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Assume that r and s are two different integers in the range 0 ≤ r, s < N ,
and denote q = ωr−s. Thus, according to out assumption, q 6= 1, and the scalar
product of vr and vs is equal to

1 + q + q2 + · · ·+ qN−1 =
qN − 1

q − 1
= 0,

because (q − 1) 6= 0 and

qN =
(
ωr−s

)N
=
(
ωN
)r−s

= 1r−s = 1.

7


